Half-reaction

 $H_2O_2(aq) + 2 H^+(aq) + 2 e^- \rightleftharpoons 2 H_2O(\ell)$

 $PbO_{2}(s) + SO_{4}^{2-}(aq) + 4 H^{+}(aq) + 2 e^{-} \rightleftharpoons PbSO_{4}(s) + 2 H_{2}O(\ell) + 1.69$ $2 \text{ HClO}(aq) + 2 \text{ H}^{+}(aq) + 2 \text{ e}^{-} \rightleftharpoons \text{ Cl}_{2}(g) + 2 \text{ H}_{2}\text{O}(l)$

 $Au^{3+}(aq) + 3 e^{-} \rightleftharpoons Au(s)$

 $HClO(aq) + H^{+}(aq) + 2 e^{-} \rightleftharpoons Cl^{-}(aq) + H_{2}O(l)$

 $O_2(g) + 4 H^+(aq) + 4 e^- \rightleftharpoons 2 H_2O(\ell)$

 $O_2(g) + 2 H^+(aq) + 2 e^- \rightleftharpoons H_2O_2(aq)$

 $O_2(g) + 2 H_2O(\ell) + 4 e^- \rightleftharpoons 4 OH^-(aq)$

 $S(s)+2 H^+(aq)+2 e^- \rightleftharpoons H_2S(aq)$

 $Cu^{2+}(aq) + 2 e^{-} \rightleftharpoons Cu(s)$

 $2 H^+(aq) + 2 e^- \rightleftharpoons H_2(g)$

 $Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$

 $Sn^{2+}(aq) + 2 e^{-} \rightleftharpoons Sn(s)$

 $Ni^{2+}(aq) + 2 e^{-} \rightleftharpoons Ni(s)$

 $Co^{2+}(aq) + 2 e^{-} \rightleftharpoons Co(s)$

 $Cd^{2+}(aq) + 2 e^{-} \rightleftharpoons Cd(s)$

 $Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$

 $Cr^{3+}(aq) + 3 e^{-} \rightleftharpoons Cr(s)$

 $Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$

 $Mn^{2+}(aq) + 2 e^{-} \rightleftharpoons Mn(s)$

 $A\ell^{3+}(aq) + 3 e^{-} \rightleftharpoons A\ell(s)$

 $Mg^{2+}(aq) + 2 e^{-} \rightleftharpoons Mg(s)$

 $Ca^{2+}(aq) + 2e^{-} \rightleftharpoons Ca(s)$

 $Sr^{2+}(aq) + 2e^{-} \rightleftharpoons Sr(s)$

 $Ba^{2+}(aq) + 2e^{-} \rightleftharpoons Ba(s)$

 $K^{+}(aq) + e^{-} \rightleftharpoons K(s)$

 $Na^{+}(aq) + e^{-} \rightleftharpoons Na(s)$

 $2 \operatorname{CO}_2(g) + 2 \operatorname{H}^+(aq) + 2 \operatorname{e}^- \rightleftharpoons \operatorname{H}_2\operatorname{C}_2\operatorname{O}_4(aq)$

 $PbSO_{4}(s) + 2 e^{-} \rightleftharpoons Pb(s) + SO_{4}^{2}(aq)$

 $F_2(g) + 2 e^- \rightleftharpoons 2 F^-(aq)$

 $MnO_4^{-}(aq) + 8 H^{+}(aq) + 5 e^{-} \rightleftharpoons Mn^{2+}(aq) + 4 H_2O(\ell) + 1.51$

 $PbO_{2}(s) + 4 H^{+}(aq) + 2 e^{-} \rightleftharpoons Pb^{2+}(aq) + 2 H_{2}O(\ell) + 1.46$

 $C\ell_2(g) + 2 e^- \rightleftharpoons 2 C\ell^-(aq)$

 $Cr_{2}O_{7}^{2-}(aq) + 14 H^{+}(aq) + 6 e^{-} \rightleftharpoons 2 Cr^{3+}(aq) + 7 H_{2}O(\ell) + 1.36$

 $Br_{2}(\ell) + 2 e^{-} \rightleftharpoons 2 Br^{-}(aq)$

 $Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$

 $Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$

 $I_2(s) + 2 e^- \rightleftharpoons 2 I^-(aq)$

E°(volts)

+ 2.89

+ 1.76

+ 1.63

+ 1.50

+ 1.49

+1.36

+ 1.23

+ 1.08

+ 0.80

+ 0.77

+ 0.70

+ 0.54

+ 0.40

+ 0.34

+ 0.17

- 0.13

- 0.14

- 0.24

- 0.28

- 0.36

- 0.40

- 0.43

- 0.44

- 0.74

-0.76

- 1.18

- 1.68

-2.36

- 2.71

- 2.87

- 2.90

- 2.91

- 2.94

0 exactly

0

CH	IEM	IST	RY	

2015

Copyright
© School Curriculum and Standards Authority, 2012 This document – apart from any third party copyright material contained in it non-commercial purposes in educational institutions, provided that it is not cl acknowledged as the copyright owner, and that the Authority's moral rights a
Copying or communication for any other purpose can be done only within the of the School Curriculum and Standards Authority. Copying or communicatio terms of the <i>Copyright Act 1968</i> or with permission of the copyright owners.
Any content in this document that has been derived from the Australian Curri Attribution-NonCommercial 3.0 Australia licence.

TRIM 2014/47585

[Data source: Aylward, G.H., & Findlay, T. (2008). SI Chemical Data (6th ed.). Queensland: John Wiley & Sons Australia, Ltd.]

 $2 H_2O(\ell) + 2 e^- \rightleftharpoons H_2(g) + 2 OH^-(aq) - 0.83$

DATA SHEET

it - may be freely copied, or communicated on an intranet, for changed and that the School Curriculum and Standards Authority is are not infringed.

he terms of the Copyright Act 1968 or with prior written permission ion of any third party copyright material can be done only within the

rriculum may be used under the terms of the Creative Commons

This document is valid for teaching and examining until 31 December 2015.

Periodio	c table																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H hydrogen 1.008																	2 He helium 4.003
Jithium 6.968	4 Be beryllium 9.012											5 B boron 10.82	6 C carbon 12.01	7 N nitrogen 14.01	8 0 0 16.00	9 F fluorine 19.00	10 Ne 20.18
11 Na sodium 22.99	12 Mg magnesium 24.31											13 A aluminium 26.98	14 Si silicon 28.09	15 P phosphorus 30.97	16 S sulfur 32.07	17 C chlorine 35.45	18 Ar argon 39.95
19 K potassium 39.10	20 Ca calcium 40.08	21 Sc scandium 44.96	22 Ti titanium 47.87	23 V vanadium 50.94	Cr chromium 52.00	25 Mn manganese 54.94	26 Fe iron 55.85	27 CO cobalt 58.93	28 Ni nickel 58.69	29 Cu 63.55	30 Zn 2inc 65.38	31 Ga gallium 69.72	32 Ge germanium 72.63	33 As arsenic 74.92	34 Se selenium 78.96	35 Br bromine 79.90	36 Kr krypton 83.80
37 Rb rubidium 85.47	38 Sr strontium 87.62	39 Y yttrium 88.91	40 Zr ^{zirconium} 91.22	41 Nb niobium 92.91	42 Mo molybdenum 95.96	43 TC technetium	44 Ru ruthenium 101.1	45 Rh rhodium 102.9	46 Pd palladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indium 114.8	50 Sn 118.7	51 Sb antimony 121.8	52 Te tellurium 127.6	53 I iodine 126.9	54 Xe xenon 131.3
55 CS caesium 132.9	56 Ba barium 137.3	57–71 * La lanthanum 138.9	72 Hf _{hafnium} 178.5	73 Ta tantalum 180.9	74 W ^{tungsten} 183.8	75 Re rhenium 186.2	76 OS osmium 190.2	77 Ir ^{iridium} 192.2	78 Pt platinum 195.1	79 Au _{gold} 197.0	80 Hg mercury 200.6	81 T8 thallium 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89–103 ** AC actinium	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 DS darmstadtium	111 Rg roentgenium	112 Cn copernicium		114 Fe flerovium		116 Lv livermorium		
Key: Atomic nu	mber	* Lant serie	hanide s	58 Ce cerium 140.1	59 Pr praseodymium 140.9	60 Nd neodymium 144.2	61 Pm promethium	62 Sm samarium 150.4	63 Eu europium 152.0	64 Gd gadolinium 157.3	65 Tb terbium 158.9	66 Dy dysprosium 162.5	67 HO holmium 164.9	68 Er erbium 167.3	69 Tm thulium 168.9	70 Yb ytterbium 173.1	71 Lu Iutetium 175.0
Syml Standa atomic w	bol ard	** Actir serie		90 Th thorium 232.0	91 Pa protactinium 231.0	92 U uranium 238.0	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 ES einsteinium	100 Fm fermium	101 Md mendelevium	102 No nobelium	103 Lr Iawrencium

[Data source: The International Union of Pure and Applied Chemistry Periodic Table of the Elements (May 2013)]

Solubility rules for ionic solids in water

Soluble in water

Soluble	Exceptio	ons
	Insoluble	Slightly soluble
Most chlorides	AgCł	PbCł ₂
Most bromides	AgBr	PbBr ₂
Most iodides	AgI, PbI ₂	
All nitrates	- No exc	entions
All ethanoates		
Most sulfates	SrSO ₄ , BaSO ₄ , PbSO ₄	$CaSO_4$, Ag_2SO_4

Insoluble in water

Insoluble	Exceptions	
	Soluble	Slightly soluble
Most hydroxides	NaOH, KOH, Ba(OH) ₂ (note: NH_4OH and AgOH do not exist)	Ca(OH) ₂ , Sr(OH) ₂
Most carbonates	$Na_{2}CO_{3}, K_{2}CO_{3}, (NH_{4})_{2}CO_{3}$	
Most phosphates	Na ₃ PO ₄ , K ₃ PO ₄ , (NH ₄) ₃ PO ₄	
Most sulfides	$Na_2S, K_2S, (NH_4)_2S$	

Soluble = more than 0.1 mole dissolves per litre

Slightly soluble = between 0.01 and 0.1 mole dissolves per litre

Insoluble = less than 0.01 mole dissolves per litre

Colours of selected ionic substances

In general, ionic solids have the same colour as that of any coloured ion they contain. Two colourless ions in general produce a white solid. Selected exceptions to these two basic rules are noted below.

Ionic Solid	Colour
copper(II) carbonate	green
copper(II) chloride	green
copper(II) oxide	black
copper(II) sulfide	black
lead(II) iodide	yellow
lead(II) sulfide	grey
manganese(IV) oxide	black
silver carbonate	yellow
silver iodide	pale yellow
silver oxide	brown
silver sulfide	black

Other coloured substances

rules are noted below.

Substance

nitrogen dioxide

copper

gold

sulfur

Most gases and liquids are colourless,

solid

solid

gas

State Colour

solid yellow

salmon pink

yellow

brown

and most metals are silvery or grey.

Selected exceptions to these basic

Catior Cr³⁺ C0²⁺ Cu²⁺ Fe²⁺ Fe³⁺ Mn²⁺ Ni²⁺

Anion	Colour
CrO ₄ ^{2–}	yellow
Cr ₂ O ₇ ²⁻	orange
MnO ₄ -	purple

Formulae

Number of moles	п	=	$\frac{m}{M} = \frac{\text{mass}}{\text{molar mass}}$
Number of moles of solute	п	=	cV
Number of moles of a gas at STP	п	=	<u>V</u> 22.71
Ideal gas law	PV	=	nRT
Parts per million	ppm	=	mass of solute (mg) mass of solution (kg)
pH of a solution	рΗ	=	- log [H⁺]

Constants

Units

Universal gas constant, R = 8.314 J K⁻¹ mol⁻¹ Avogadro constant, N = 6.022×10^{23} mol⁻¹ STP is 0.0 °C and 100.0 kPa

Volumes are given in the units of litres (L), or millilitres (mL). Temperatures are given in the units of degrees Celsius (°C) or kelvin (K). It may be assumed that 0.0 $^{\circ}$ C = 273.15 K. Energy changes are given in kilojoules (kJ). Pressures are given in kilopascals (kPa). Solution concentrations are given in the units moles per litre (mol L⁻¹), grams per litre (g L⁻¹) or parts per million (ppm).

Volume of 1.00 mol of an ideal gas at 0.0 °C and 100.0 kPa is 22.71 L Equilibrium constant for water at 25 °C, $K_w = 1.00 \times 10^{-14}$

Coloured ions in aqueous solution

า	Colour
	deep green
	pink
	blue
	pale green
	pale brown
	pale pink
	green

Coloured halogens

Halogen	Colour of free element
$F_2(g)$	yellow
$C\ell_2(g)$	greenish-yellow
$Br_2(\ell)$	red
I ₂ (s)	purple
Halogen	Colour of halogen in aqueous solution
Cl ₂ (aq)	pale yellow
$Cl_2(aq)$ Br_2(aq)	pale yellow orange
2	
Br ₂ (aq)	orange
Br ₂ (aq)	orange

purple